Product Integration-Collocation Methods for Noncompact Integral Operator Equations*

نویسندگان

  • By G. A. Chandler
  • I. G. Graham
چکیده

We discuss the numerical solution of a class of second-kind integral equations in which the integral operator is not compact. Such equations arise, for example, when boundary integral methods are applied to potential problems in a two-dimensional domain with corners in the boundary. We are able to prove the optimal orders of convergence for the usual collocation and product integration methods on graded meshes, provided some simple modifications are made to the underlying basis functions. These are sufficient to ensure stability, but do not damage the rate of convergence. Numerical experiments show that such modifications are necessary in certain circumstances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of nonlinear Volterra-Hammerstein integral equations using alternative Legendre collocation method

Alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given an...

متن کامل

Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials

In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...

متن کامل

Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations

In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...

متن کامل

Numerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like ‎operator‎

In this paper‎, ‎first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator‎. ‎Then‎, ‎we discuss and investigate the convergence and error analysis of the proposed method‎. ‎Finally‎, ‎to show the accuracy of the proposed method‎, ‎we present two numerical ‎examples.‎

متن کامل

Convergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations

In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010